
ANALYSIS OF THE TEMPERATURE OF A CIRCULAR 

ELECTRODE 

N. V. Pashatskii and S. V. Osovets UDC 533.924 

Results are presented of numerical computations of the temperature fields in the 
circular electrode of a plasmotron. Taken into account in the model proposed are 
the nonlinearity in the boundary conditions, the dependence of the electrode ma- 
terial properties on the temperature, the heat of phase transformation, etc. 

Electrodes from graphite materials are utilized extensively in electric-arc units [i, 
2], however, the temperature conditions for their operation have still been studied insuf- 
ficiently. A model in which the cylindrical electrode geometry, the dependence of the co- 
efficient of thermal diffusivity of the material on the temperature, the heat losses by 
radiation and evaporation for a material with external side and endface surfaces, and finite 
size of the heat source are taken into account in contrast to earlier papers [3], is used 
in the present investigation to compute the two-dimensional temperature field in a circular 
graphite electrode of a plasmotron. 

The following assumptions are used in the analysis: changes in the electrode size due 
to erosion are insignificant, the heat flux is delivered just through the reference spot of 
the electric arcs on the electrode endface surface. Since thermal sources are surface 
sources, their action is taken into account in the boundary condition by giving the heat flux 
density q. Furthermore, it is assumed that the sources are "spread out" uniformly over a 
ring of width 6 on the electrode endface. Such a passage from spots to a ring (arc path) is 
justified by the fact that arc spots are, as experiments show, in continuous motion near the 
middle of the circle on the endface surface. The spot diameter is d s = (2-3)'10 -3 m. 

The differential equation of heat conduction of a circular electrode has the following 
form in cylindrical coordinates 

0'~ = 0---;- -}- a (T) --r Or ~- ~ z  a (T) ~ z  " ( 1 )  

Equation (1) i s  so lved under the  fo l lowing  boundary c o n d i t i o n s  
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2 " 2 < r < ~ r ~ .  

The quantity h in (2) governs just the convective heat elimination from the inner sur- 
face of the circular electrode since the heat losses by radiation from this surface are com- 
pensated by the incident radiation from the rod electrode. The value of h for a spiral flux 
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Fig. i. Temperature on the electrode endface: I) �9 = i0 sec; 
2) 20; 3) 30; 4) 40; 5) 50; 6) 60 sec. 

Fig. 2. Temperature distribution over the electrode length: 
i) ~ = I0; 2) 30; 3) 60 sec; a) r = rl; b) r = r= 

is selected on the basis of data of [4]. 

Thermal radiation exerts resolving influence on the temperature of the electrode ex- 
ternal surfaces, consequently we neglect heat convection for these surfaces. 

The first component in the square brackets in conditions (3) and (4) describes tle radi- 
ation process, and the second, the process of electrode material evaporation. 

The product of the graphite density by its specific heat pc is assumed constant and in- 
dependent of the temperature [i]. A formula presented in [5] 

a (T) = 3.64.10 -5 [exp (375/T) -- I]. 

is used to compute the thermal diffusivity of graphite. 

The dependence of the rate of graphite evaporation v on the temperature is found on the 
basis of data on evaporation in a vacuum [6] and has the following form 

1.25.1011 exp ( - -  9 2 5 0 0 / T )  

y7 
Let us note that the results of computing v by means of this expression for temperatures of 
~3000 K and above are in good agreement with experimental data on erosion [7] despite the fact 
that these latter were obtained at atmospheric pressure in air. 

The values of the geometric and physical parameters in the computation were the follow- 
ing: r I=0.03; r 2 = 0.05; ~ = 0.2; 6 = 2.5"10 -3 m; p = 1700 kg/m~; c = 2078 (J/(kg'K); L = 
2.14.107 J/kg (for C3) , o = 5.67"10 -8 W/(m'K4), T 0 = 293 K. The thermal flux power from 
the arc in the electrode equals 2-104 W as in [3]. 

The method of alternate directions using an implicit finite-difference scheme of first- 
order accuracy in the time and of second-order accuracy in the space variable ~O(h~, h~, h z) 
[8] was applied for numerical computations in this model. The computation was perform~d on 
a 8 x 40 (r x z) mesh with the time step h T = 0.25 sec, and the computation error was :t20 K. 

As was shown in [3], the stationary mode was achieved along the electrode length in ap- 
proximately 5 min. In connection with the fact that we are interested principally in ~;he 
temperature field on the endface working surface (and here the stationary mode is achi(~ved, 
in practice, after 1-2 min), all the computations are performed for m <_ 60 sec. 

It is seen from Fig. 1 that as was expected, an almost stationary state is set up after 
approximately 60 sec on the electrode working surface. The maximal value of the temperature 
is 3040 K. 

The temperature on the side surfaces drops sharply in the direction towards the cold 
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Fig. 3. Electrode endface temperature for s = 0.i m (i), a = 
const = 12.5"10 -4 m2/sec (2), ~ = 0 (3); 4) fundamental 
model �9 = 60 sec. 

Fig. 4. Endface surface temperature for 6 = 7.5"10 -3 m (i), 
Q = 15 (2), Q = 25 kW (3); T = 60 sec; 4) fundamental model. 

end of the electrode: diminished almost in half for z = (0.i - 0.2)s (Fig. 2). Despite the 
different boundary conditions on the outer and inner electrode surfaces, the temperatures of 
these surfaces differ slightly from each other (AT < i00 K for z = 0), and the difference 
vanishes at distances z ~ 0.is from the working endface. 

As the electrode length diminishes, the temperature maximum on the endface is reduced 
while the temperature on the electrode inner and outer edges increases somewhat (curve i in 
Fig. 3). The same pattern is observed if the graphite thermal diffusivity coefficient (in 
the 293-3000 K temperature range) is taken constant in the computations and equal to 12.5" 
10 -6 m2/sec. Finally, upon discarding the evaporation term in the conditions (3) and (4), 
the temperature grows noticeably as the source center is approached, and remains almost the 
same on the electrode edges as in the fundamental model. 

Since the size of the source (the mean diameter of the reference spot) and its power 
depend on the operating mode of the plasma head, it is interesting to investigate the de- 
pendence of the electrode temperature on these factors also. 

As the width 6 of the arc path increases (from 2.5"10 -~ to 7.5"10 -3 m), which can cor- 
respond to transition to the stationary thermal state (heating) of the electrodes in prac- 
tice, the temperature at the point of the maximum at the endface is reduced sharply (Fig. 4). 
Changes in the thermal source intensity (with • limits) also exert significant influence 
on the temperature, especially at the center of the endface. 

Therefore, the numerical experiment showed that the most essential factors governing the 
temperature field at a circular electrode endface are the thermal source intensity and size. 
The dependence of the thermal diffusivity coefficient on the temperature and evaporation of 
the material exert less influence on the electrode temperature. 

The reduced computed, almost stationary, value of the temperature on the endface inner 
and outer edges (T~ = 2064, T r = 1849 K, z = 0, m = 150 sec) as compared with experiment 
[3] (Tr~ = 2200 K) can be explalned by the neglect of radial displacements of the arc spots 
caused ~y shunting in the model, which equilibrate the temperature on the electrode endface. 

NOTATION 

T, absolute temperature; r, radius; z; longitudinal coordinate; a, thermal diffusivity 
coefficient, p, density; c, specific heat; L, heat of evaporation; o, Stefan-Boltzmann con- 
stant; h = s/K, reduced heat elimination coefficient; K, heat conduction coefficient; v, 
rate of material evaporation; and ~, time. 
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ANALYSIS OF THE CORRECTNESS OF A TWO-TEMPERATURE 

COMPUTATION METHOD 

I. V. Goncharov and V. L. Mikov UDC 536.2.01 

Two methods of determining the heat transfer coefficient between components are 
compared on the basis of an exact solution of a model problem. 

A multitemperature method [1-4] whose general principles are elucidated in [i] is used 
extensively at this time to model heat transport processes in heterogeneous media (granular, 
laminar, fibrous). This approach is based on taking the average of the thermophysica[ 
parameters with respect to each component in a macrovolume element, which results in a sys- 
tem of interrelated heat conduction equations. The connection between the heat flux )e- 
tween the components and their mean temperatures for which the Henry law is utilized i l] 

(i) qq 

must  be e s t a b l i s h e d  t o  c l o s e  t h e  sy s t em.  

Two methods  a r e  known f o r  d e t e r m i n i n g  a :  t h e  " c o r r e l a t i o n "  [1] and t h e  l i n e a r  r a d i a l  
h e a t  f l u x  methods  [4 ,  5 ] .  The p rob lem o f  a n a l y z i n g  t h e  c o r r e c t n e s s  o f  t h e  methods  t o  de-  
t e r m i n e  t h e  h e a t  t r a n s f e r  c o e f f i c i e n t  be tween components  i s  posed  in  t h i s  p a p e r .  

Le t  us examine a model  h e a t  p r o p a g a t i o n  p rob lem in  a b i l a m i n a r  c o m p o s i t e  o f  r e g u . a r  
s t r u c t u r e  under  b o u n d a r y  c o n d i t i o n s  o f  t h e  second  k i n d .  The r e p r e s e n t a t i v e  s e c t i o n  o f  t h e  
m a t e r i a i  i s  d i s p l a y e d  in  F i g .  1. The t h e r m o p h y s i c a l  c h a r a c t e r i s t i c s  o f  t h e  m a t e r i a l  com- 
p o n e n t s  a r e  c o n s i d e r e d  i n d e p e n d e n t  o f  t h e  t e m p e r a t u r e .  Then we can w r i t e  f o r  an i s o l a t e d  
s e c t i o n  e l emen t  

~ z ~ T i , ~ + s  i = l ,  2, (2)  

T~(0, z, x ) =  0, (2a )  

- -  ~ Ti,~ [z=0 = qo (t), ?~z~T~.zlz:=n = qn(/), (2b)  

T t , x = 0 ,  x : = l  2 , ( 2c )  

- - % x l T l , x  -~- %x2T2,x, TI : T2, x = 0. (2d)  

i. Two-Temperature Theory. Let us introduce the concept of the mean temperature over 
I i 

-- 1 [ Tdx. Then (2) can be converted into a section Ti- li 

o (_ 1/+'  
Ezi Ti,=--ciTi,t - -  li q*, i == |, 2, 
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